Multiplexing

A. Pengertian Multiplexing

Multiplexing adalah suatu teknik mengirimkan lebih dari satu (banyak) informasi melalui satu saluran. Istilah ini adalah istilah dalam dunia telekomunikasi. Tujuan utamanya adalah untuk menghemat jumlah saluran fisik misalnya kabel, pemancar & penerima (transceiver), atau kabel optik. Contoh aplikasi dari teknik multiplexing ini adalah pada jaringan transmisi jarak jauh, baik yang menggunakan kabel maupun yang menggunakan media udara (wireless atau radio). Sebagai contoh, satu helai kabel optik Surabaya-Jakarta bisa dipakai untuk menyalurkan ribuan percakapan telepon. Idenya adalah bagaimana menggabungkan ribuan informasi percakapan (voice) yang berasal dari ribuan pelanggan telepon tanpa saling bercampur satu sama lain.
Teknik multiplexing ada beberapa cara. Yang pertama, multiplexing dengan cara menata tiap informasi (suara percakapan 1 pelanggan) sedemikian rupa sehingga menempati satu alokasi frekuensi selebar sekitar 4 kHz. Teknik ini dinamakan Frequency Division Multiplexing (FDM). Teknologi ini digunakan di Indonesia hingga tahun 90-an pada jaringan telepon analog dan sistem satelit analog sebelum digantikan dengan teknologi digital.
Pada tahun 2000-an ini, ide dasar FDM digunakan dalam teknologi saluran pelanggan digital yang dikenal dengan modem ADSL (asymetric digital subscriber loop). Yang kedua adalah multiplexing dengan cara tiap pelanggan menggunakan saluran secara bergantian. Teknik ini dinamakan Time Division Multiplexing (TDM). Tiap pelanggan diberi jatah waktu (time slot) tertentu sedemikian rupa sehingga semua informasi percakapan bisa dikirim melalui satu saluran secara bersama-sama tanpa disadari oleh pelanggan bahwa mereka sebenarnya bergantian menggunakan saluran. Kenapa si pelanggan tidak merasakan pergantian itu? Karena pergantiannya terjadi setiap 125 microsecond; berapapun jumlah pelanggan atau informasi yang ingin di-multiplex, setiap pelanggan akan mendapatkan giliran setiap 125 microsecond, hanya jatah waktunya semakin cepat. Teknik multiplexing yang ketiga adalah yang digunakan dalam saluran kabel optik yang disebut Wavelength Division Multiplexing (WDM), yaitu satu kabel optik dipakai untuk menyalurkan lebih dari satu sumber sinar dimana satu sinar dengan lamda tertentu mewakili satu sumber informasi.
Pada pembahasan ini, digambarkan teknik-teknik yang efisien dalam penggunaan data link dengan beban yang sangat berat. Secara spesifik, dengan perangkat yang dihubungkan dengan jalur ujung-ke-ujung, umumnya diharapkan adanya frame multiple yang menonjol sehingga link data tidak macet di antara kedua station tersebut. Biasanya, dua station yang saling berkomunikasi tidak akan menggunakan link data berkapasitas penuh. Untuk efisiensinya, kaasitas tersebut harus dibagi. Istilah umum untuk pembagian semacam itu disebut multiplexing.
Aplikasi multiplexing yang umum adalah dalam komunikasi long-haul. Media utama pada jaringan long-haul berupa jalur gelombang mikro, koaksial, atau serat optik berkapasitas tinggi. Jalur-jalur ini dapat memuat transmisi data dalam jumlah besar secara simultan dengan menggunakan multiplexing.
Pada gambar dibawah ini menggambarkan fungsi multiplexing dalam bentuk yang paling sederhana. Terdapat input n untuk multiplexer. Multiplexer dihubungkan ke demultiplexer melalui sebuah jalur tunggal. Saluran tersebut mampu membawa n channel data yang terpisah.
Multiplexer menggabungkan (melakukan multiplexing) data dari jalur input n dan mentransmisikannya melalui jalur berkapasitas tinggi. Demultiplexer menerima aliran data yang sudah dimultiplexkan, kemudian memisahkan (malakukan demultiplexing) data berdasarkan channel, lalu mengirimkannya ke saluran output yang tepat.
Penggunaan multiplexing secara luas dalam komunikasi data dapat dijelaskan melalui hal-hal berikut ini:
 Semakin tinggi rate data, semakin efektif biaya untuk fasilitas transmisi. Maksudnya, untuk suatu aplikasi dan pada jarak tertentu, biaya per kbps menurun bila rate data fasilitas transmisi meningkat. Hampir sama dengan itu, biaya transmisi dan peralatan penerima per kbps menurun, bila rate data meningkat.
 Sebagian besar perangkat komunikasi data individu memerlukan dukungan rate data yang relatif sedang-sedang saja. Sebagai contoh, untuk sebagian besar aplikasi komputer pribadi dan terminal, rate data diantara 9600 bps dan 64 kbps sudah cukup memadai.

Pernyataan tersebut dimaksudkan sebagai syarat-syarat bagi perangkat komunikasi data. Pernyataan yang sama diterapkan untuk komunikasi suara. Maksudnya, semakin besar fasilitas transmisi sebagai syarat untuk channel suara, semakin berkurang biaya per channel suara individu. Kapasitas yang diperklukan untuk sebuah channel suara tunggal biasanya sedang-sedang saja.
Pembahasan ini menitik beratkan pada tiga jenis teknik multiplexing. Pertama, Frequency-Division Multiplexing (FDM), yang paling banyak dilakukan dan cukup dikenal oleh siapa saja yang pernah menggunakan radio atau televisi. Kedua, kasus khusus dari time Division Multiplexing (TDM) atau disebut juga dengan TDM synchkronous. Jenis ini paling banyak dipergunakan untuk memultiplexingkan aliran suara dan aliran data yang didigitalkan. Jenis ketiga dimaksudkan untuk meningkatkan efisiensi synchronous dengan cara menambahkan rangkaian rumit ke multiplexer. Jenis ini memiliki beberapa sebutan, diantaranya statistical TDM, synchronous TDM, dan intellegence TDM. Buku ini menggunakan istilah statistical TDM, yang menyoroti salah satu sifat utamnya. Terakhir, kita mengamati jalur pelanggan digital, yang mengkombinasikan teknologi TDM synchronous dan FDM.


B. Teknik Multiplexing

1. Frequency Division Multiplexing (FDM).
Gabungan banyak kanal input yang menjadi sebuah kanal output yang berdasarkan frekuensi, dimana gabungan ini digunakan ketika bandwidth dari medium melebihi bandwidth sinyal yang diperlukan untuk transmisi. Tiap sinyal dimodulasikan ke dalam frekuensi carrier yang berbeda dan frekuensi carrier tersebut terpisah dimana bandwidth dari sinyal-sinyal tersebut tidak overlap. Contoh yang paling dikenal dari FDM adalah siaran radio dan televisi kabel. FDM disebut juga “code transparent”. Pada gambar di bawah , dapat dilihat enam sumber sinyal dimasukkan ke dalam suatu multiplexer, yang memodulasi tiap sinyal ke dalam frekuensi yang berbeda (f 1,...,f6). Tiap sinyal modulasi memerlukan bandwidth center tertentu disekitar frekuensi carriernya, dinyatakan sebagai suatu channel. Sinyal input baik analog maupun digital akan ditransmisikan melalui medium dengan sinyal analog.
Contoh aplikasi FDM ini yang polpuler pada saat ini adalah Jaringan Komunikasi Seluler, seperti GSM ( Global System Mobile) yang dapat menjangkau jarak 100 m s/d 35 km. Tingkatan generasi GSM adalah sebagai berikut :
First-generation: Analog cellular systems (450-900 MHz)
• Frequency shift keying for signaling
• FDMA for spectrum sharing
• NMT (Europe), AMPS (US)

Second-generation: Digital cellular systems (900, 1800 MHz)
• TDMA/CDMA for spectrum sharing
• Circuit switching
• GSM (Europe), IS-136 (US), PDC (Japan)

2.5G: Packet switching extensions
• Digital: GSM to GPRS
• Analog: AMPS (Advanced Mobile Phone System) to CDPD (Cellular Digital Packet Data)

3G:
• High speed, data and Internet services
• IMT-2000
Gambar Pemakaian Frekwensi pada GSM

FDM yaitu pemakaian secara bersama kabel yang mempunyai bandwidth yang tinggi terhadap beberapa frekuensi (setiap channel akan menggunakan frekuensi yang berbeda). Contoh metoda multiplexer ini dapat dilihat pada kabel coaxial TV, dimana beberapa channel TV terdapat beberapa chanel, dan kita hanya perlu tunner (pengatur channel) untuk gelombang yang dikehendaki. Pada teknik FDM, tidak perlu ada MODEM karena multiplexer juga bertindak sebagai modem (membuat permodulatan terhadap data digital). Kelemahan Modem disatukan dengan multiplexer adalah sulitnya meng-upgrade ke komponen yang lebih maju dan mempunyai kecepatan yang lebih tinggi (seperti teknik permodulatan modem yang begitu cepat meningkat). Kelemahannya adalah jika ada channel (terminal) yang tidak menghantar data, frekuensi yang dikhususkan untuk membawa data pada channel tersebut tidak tergunakan dan ini merugikandan juga harganya agak mahal dari segi pemakaian (terutama dibandingkan dengan TDM) kerana setiap channel harus disediakan frekuensinya. Kelemahan lain adalah kerana bandwidth jalur atau media yang dipakai bersama-sama tidak dapat digunakan sepenuhnya, kerana sebagian dari frekuensi terpaksa digunakan untuk memisahkan antara frekuensi channelchannel yang ada. Frekuensi pemisah ini dipanggil guardband.

Gambar Frequency Division Multiplexing

Pengalokasian kanal (channel) ke pasangan entitas yang berkomunikasi diilustrasikan pada gambar dibawah ini :
Code Division Multiplexing (CDM)
Code Division Multiplexing (CDM) dirancang untuk menanggulangi kelemahankelemahan yang dimiliki oleh teknik multiplexing sebelumnya, yakni TDM dan FDM.. Contoh aplikasinya pada saat ini adalah jaringan komunikasi seluler CDMA (Flexi) Prinsip kerja dari CDM adalah sebagai berikut :
  • 1. Kepada setiap entitas pengguna diberikan suatu kode unik (dengan panjang 64 bit) yang disebut chip spreading code.
  • 2. Untuk pengiriman bit ‘1’, digunakan representasi kode (chip spreading code) tersebut.
  • 3. Sedangkan untuk pengiriman bit ‘0’, yang digunakan adalah inverse dari kode tersebut.
  • 4. Pada saluran transmisi, kode-kode unik yang dikirim oleh sejumlah pengguna akan ditransmisikan dalam bentuk hasil penjumlahan (sum) dari kode-kode tersebut.
  • 5. Di sisi penerima, sinyal hasil penjumlahan kode-kode tersebut akan dikalikan dengan kode unik dari si pengirim (chip spreading code) untuk diinterpretasikan.

selanjutnya :
jika jumlah hasil perkalian mendekati nilai +64 berarti bit ‘1’,
jika jumlahnya mendekati –64 dinyatakan sebagai bit ‘0’.

Contoh penerapan CDM untuk 3 pengguna (A,B dan C) menggunakan panjang kode 8 bit (8-chip spreading code) dijelaskan sebagai berikut:

a. Pengalokasian kode unik (8-chip spreading code) bagi ketiga pengguna :
- kode untuk A : 10111001
- kode untuk B : 01101110
- kode untuk C : 11001101

b. Misalkan pengguna A mengirim bit 1, pengguna B mengirim bit 0 dan pengguna C mengirim bit 1. Maka pada saluran transmisi akan dikirimkan kode berikut :
- A mengirim bit 1 : 10111001 atau + - + + + - - +
- B mengirim bit 0 : 10010001 atau + - - + - - - +
- C mengirim bit 1 : 11001101 atau + + - - + + - +
- hasil penjumlahan (sum) = +3,-1,-1,+1,+1,-1,-3,+3


c. Pasangan dari A akan menginterpretasi kode yang diterima dengan cara :
- Sinyal yang diterima : +3 –1 –1 +1 +1 –1 –3 +3
- Kode milik A : +1 –1 +1 +1 +1 -1 –1 +1
- Hasil perkalian (product) : +3 +1 –1 +1 +1 +1 +3 +3 = 12
Nilai +12 akan diinterpretasi sebagai bit ‘1’ karena mendekati nilai +8.

d. Pasangan dari pengguna B akan melakukan interpretasi sebagai berikut :
- sinyal yang diterima : +3 –1 –1 +1 +1 –1 –3 +3
- kode milik B : –1 +1 +1 –1 +1 +1 +1 –1
- jumlah hasil perkalian : –3 –1 –1 –1 +1 –1 –3 –3 = -12
berarti bit yang diterima adalah bit ‘0’, karena mendekati nilai –8.

2. Time Division Multiplexing (TDM).
Secara umum TDM menerapkan prinsip pemnggiliran waktu pemakaian saluran transmisi dengan mengalokasikan satu slot waktu (time slot) bagi setiap pemakai saluran (user).
TDM yaitu Terminal atau channel pemakaian bersama-sama kabel yang cepat dengan setiap channel membutuhkan waktu tertentu secara bergiliran (round-robin time-slicing). Biasanya waktu tersebut cukup digunakan untuk menghantar satu bit (kadang-kadang dipanggil bit interleaving) dari setiap channel secara bergiliran atau cukup untuk menghantar satu karakter (kadang-kadang dipanggil character interleaving atau byte interleaving). Menggunakan metoda character interleaving, multiplexer akan mengambil satu karakter (jajaran bitnya) dari setiap channel secara bergiliran dan meletakkan pada kabel yang dipakai bersama-sama sehingga sampai ke ujung multiplexer untuk dipisahkan kembali melalui port masing-masing. Menggunakan metoda bit interleaving, multiplexer akan mengambil satu bit dari setiap channel secara bergiliran dan meletakkan pada kabel yang dipakai sehingga sampai ke ujung multiplexer untuk dipisahkan kembali melalui port masing-masing. Jika ada channel yang tidak ada data untuk dihantar, TDM tetap menggunakan waktu untuk channel yang ada (tidak ada data yang dihantar), ini merugikan penggunaan kabel secara maksimun. Kelebihanya adalah karena teknik ini tidak memerlukan guardband jadi bandwidth dapat digunakan sepenuhnya dan perlaksanaan teknik ini tidak sekompleks teknik FDM. Teknik TDM terdiri atas :

Synchronous TDM
Hubungan antara sisi pengirim dan sisi penerima dalam komunikasi data yang menerapkan teknik Synchronous TDM dijelaskan secara skematik pada gambar

Gambar Synchronous TDM

Cara kerja Synchronous TDM dijelaskan dengan ilustrasi dibawah ini
Gambar Ilustrasi hasil sampling dari input line

Asynchronous TDM
Untuk mengoptimalkan penggunaan saluran dengan cara menghindari adanya slot waktu yang kosong akibat tidak adanya data ( atau tidak aktif-nya pengguna) pada saat sampling setiap input line, maka pada Asynchronous TDM proses sampling hanya dilakukan untuk input line yang aktif saja. Konsekuensi dari hal tersebut adalah perlunya menambahkan informasi kepemilikan data pada setiap slot waktu berupa identitas pengguna atau identitas input line yang bersangkutan. Penambahan informasi pada setiap slot waktu yang dikirim merupakan overhead pada Asynchronous TDM. Gambar di bawah ini menyajikan contoh ilustrasi yang sama dengan gambar Ilustrasi hasil sampling dari input line jika ditransmisikan dengan Asynchronous TDM.
Gambar Frame pada Asysnchronous TDM


3. Statistical Time Division Multiplexing.
TDM yang bekerja seperti FDM mengurangi/menghapus alokasi “idle time” pada Terminal yang tak aktif dan menghapus/mengurangi blok-blok kosong dalam Blok-blok pesan campuran. Statistical TDM dikenal juga sebagai asynchronous TDM dan intelligent TDM, sebagai alternatif synchronous TDM. Efisiensi penggunaan saluran secara lebih baik dibandingkan FDM dan TDM. Memberikan kanal hanya pada terminal yang membutuhkannya dan memanfaatkan sifat lalu lintas yang mengikuti karakteristik statistik. STDM dapat mengidentifikasi terminal mana yang mengganggur / terminal mana yang membutuhkan transmisi dan mengalokasikan waktu pada jalur yang dibutuhkannya. Untuk input, fungsi multiplexer ini untuk men-scan bufferbuffer input, mengumpulkan data sampai penuh, dan kemudian mengirim frame tersebut. Dan untuk output, multiplexer menerima suatu frame dan mendistribusikan slot-slot data ke buffer output tertentu.



refrensi:
chemid999.files.wordpress.com/2011/01/makalah-multiplexing.docx
http://adi0511.blogspot.com/2009/11/pengertian-multiplexing-fdm-tdm-dan-cdm.html



Posting Lebih Baru Posting Lama

2 Responses to “Multiplexing”